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Abstract-The stability of a rectangular solid in plane strain subjected to a constant axial and lateral pressure is
investigated. Two types of lateral pressure are considered, namely, a hydrostatic pressure and a constant direc­
tional pressure. Problems of this type have been studied by Kerr and Tang for a perfectly elastic material of the
harmonic type. Constitutive equations of this type do not, however, give a good description of known materials
unless the strains are not too large. They have found that, for the case of antisymmetric deformation (bending), the
constant directional pressure destabilizes the solid while the hydrostatic pressure stabilizes the solid. Moreover
the solid is unstable for both cases when the lateral pressure is equal to the axial pressure. In this paper, a Mooney
material is considered. It is found that both types of lateral pressure stabilize the solid for both antisymmetric and
symmetric deformations.

1. INTRODUCTION

THE instability of a rectangular solid in plane strain subjected axially to a constant
pressure* CPl and laterally to a constant pressure Cpz, Fig. 1, has been studied in a series
of papers by Kerr and Tang [1-3]. A fairly complete list of related references has been
given in [3]. Two types of lateral pressure have been considered, a hydrostatic pressure
and a constant directional pressure. They have found that the constant directional pz
destabilizes the solid and the hydrostatic pz stabilizes the solid for pz less than approxi­
mately 2Pl . Moreover, the solid is unstable when PI = pz.

The constitutive relation used by Kerr and Tang was derived from the so called
"standard" strain energy density. Materials with a standard strain energy density function
are called harmonic materials and have been treated by John [4]. While the standard
strain energy density function has the advantage that the corresponding solution reduces
to that of the linear elasticity equations for infinitesimal deformations, it does not give a
good description of known materials unless the strains are not too large. This deficiency
has been demonstrated by Sensenig [5].

The problem studied by Kerr and Tang involves very large deformations if the solid
is not too thin or the ratio PZ/Pl is not too small. It is felt, therefore, that their results may
not even serve as a qualitative description of the true behavior of a real material for large
deformations. To examine the effect oflarge deformations we have solved the same problem
by using the general nonlinear theory given in Green and Zerna [6]. Unfortunately, no
simple constitutive relation is available for compressible materials and, therefore, no
direct comparison can be made. Nevertheless our results are valid for large deformations
and are completely different from those obtained by Kerr and Tang.

We have solved the problem for a Mooney solid and found that both the constant
directional and the hydrostatic pz stabilizes the solid. While the stabilizing effect due to a

* C is a material constant involved in the analysis.
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FIG. I.

hydrostatic P2 is independent of the thickness of the solid, the stabilizing effect due to a
constant directional P2 is stronger for a thinner solid. Furthermore, the solid is stable
when PI = P2' These results hold for both antisymmetric instability (bending) and sym­
metric instability (bulging). The case of symmetric instability has not been treated numeri­
cally by Kerr and Tang due to the obvious reason that very large strains are involved.

Finally, it should be mentioned that the stability of Mooney type solids of other
geometries has been studied by Rivlin, Wilkes alld others.*

2. SMALL DEFORMATION SUPERPOSED ON FINITE UNIFORM
EXTENSIONS IN TWO PERPENDICULAR DIRECTIONSt

Let us consider a rectangular solid Bo occupying the region:j: 0 S XI S 1,
- h/2 S X2 S h/2, - 00 S X3 S + 00, where Xi is a rectangular system. The body Bo is
deformed into a body B by two uniform finite extensions (compressions) along the X I and

• A lisl of references may be found in [6, 7].
t This section is an abridged version of the results given in Green and Zerna [6]. The reader is referred to

[6J for details of the notation and the derivation.
t The coordinates have been nondimensionalized.
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X2 directions. We take a set of moving coordinates (}i to coincide with a fixed rectangular
system of coordinates (x, y, z) in the strained body B. Thus we have

(2.1 )

If the axes (x, y, z) are taken to coincide with the rectangular axes then

(2.2)

where AI, A2 and A3 = 1 are the constant extension ratios. If the material is incompressible,
then Al = I/A2 since AIA2A3 = 1 and A3 = 1. Equation (2.2) may now be written as

X2 = yA, (2.3)

where A == Al = I/A2.
It follows from (2.3) and (2.1) that the covariant metric tensors gij and Gii of B o and B,

respectively, are

~] (2.4)

where (jij is the Kronecker delta. The strain invariants associated with body Bare

II =Ai+A~+A~ =A2+;2+1

I
12 = Al 2 +Ai 2+A;2 = A2+A2 + I

13 = 1.

If the strain-energy function W is of the form

(2.5)

(2.6)

where C and K are constants, then the stress components rij for body B are, apart from the
constant C

Here, tensor Bij is given by

Bij = I Igij _ gikgik

and Cp is a hydrostatic pressure. It follows from (2.7, is) that

r II = 2(1 + K)A2+ 2K + P

I
r 22 = 2(1 +K) A2+2K +p

r
33 = 2+2K(A

2
+ ;2) +p

r l2 = r l3 = r 23 = o.

(2.7)

(2.S)

(2.9)
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Since A and p are constants for the present problem, the stress equations of equilibrium
are satisfied when the body forces are zero. If body B is held in equilibrium by two constant
pressures CPI and Cp2, then we must set

2(1+K)),2+2K+p = -PI

I
2(1 +K)TI+2K+p = -P2'

A

(2.10)

Equation (2.10) can be solved for the two unknown constants Aand p.
To study the stability of the strained body B we consider a slightly buckled body B'.

A point P in body B is carried to a point P' in body B' by the dimensionless displacements
wie l , ( 2 ), rx = 1 and 2, where Wa are the covariant components of the displacement vector
w referred to the base vectors at point P of body B.

The covariant metric tensor of body B' is

Gij+G;j = 6ij+(Wi,j+wj)

where Wi,j = ow;/iJej
. The strain invariants associated with body B' are

II +1'1 = II +gaPG~p

12 + I~ = 12 + gaPG~p

I3+I~ = I3+6aPG~p.

For the strained body B' the strain energy function corresponding to (2.6) becomes

The corresponding stress tensor for the strained body B' is r ij +r'ij when..

Here, tensor B,ij is given by

and CIp' is again a hydrostatic pressure. It follows from (2.14, 2.15) that

r'll = 4Kw2,2- 2pWl,l +p'

r'22 = 4Kw I ,I -2pW2,2 +P'

'33 4K( 1 12)'r = ),2WI,I+11. W 2 ,2 +p

r'12 = -(2K+p)(W I,2+ W2,d

The equations of equilibrium reduce to

(r,;j + rikw. k + rkjw. k)" = o.
). l. )1

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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(2.18)

Substitution of (2.16) into (2.17) yields

(,11 _ 2K - P)W 1,11 +(,22 - 2K - P)W 1,22 + P:l = 0

(,11- 2K - P)W2,11 +(,22 -2K - P)W 2,22 + P:2 = O.

The third equation of equilibrium is satisfied identically. To obtain a third equation for
the determination of the three unknown functions WI' W2 and p', we use the condition

13 = O.
Equations (2.19, 2.12) imply that

Wl,l +W2 ,2 = O.

On substituting (2.9) into (2.18), we obtain

2(1 + K)..Fw 1,11 + 2(1 + K) }2 W 1,22 + P:I = 0

2(1 + K)A2W2,11 + 2(1 + K) A12 W2,22 + P:2 = o.

(2.19)

(2.20)

(2.21)

Equations (2.20, 2.21) together with certain homogeneous boundary conditions constitute
an eigenvalue problem for the determination of A. This, in turn, determines the ratio of
PI and P2 from equation (2.10).

3. BOUNDARY CONDITIONS

Let Yi be a set of moving rectangular cartesian coordinates in the body B' and let the
axes (YI, Y2' Y3) coincide with the fixed axes (x, Y, z). Then

(3.1 )

We shall denote the base vectors at P in the body B by G i and the base vectors at P' in
the body B' by Gi+Gd

.

The surfaces X2 = ±hj2 are parametrized by the equations

(3.2)

Referred to Yi-axes, the unit normal to (3.2) has directions proportional to aFjay;. The
unit normal n to the surface (3.2) may be written as

n = (ni +ni)(Gi +G'i).

It follows from a simple tensor transfortnation that

, aF aYj aF
ni+ni = J aYj aei = J aei

where

is a normalizing constant.

(3.3)

(3.4)

(3.5)
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The contravariant components C(ti +(i) of the surface traction on the surface (3.2) of
the body B' are

t i + (i = (-rji + "ji)(nj + nj)

= -r2i + (,'2i + ,2iW2 .2 ).

The physical components qT i + T'i) of this traction are then given by

T' +T'l = ,21 +[,'21 + ,21(W + W )]1,1 2,2

T 2 + T'2 = ,22 + [,'22 + 2,22 W2 •2].

If the surface traction is a hydrostatic pressure P2' then

,'22 - 2P2 W 2.2 = O.

(3.6)

(3.7)

(3.8)

(3.9)

(3.1 0)

The second condition of (3.7) is just the second of (2.10).
Alternatively, we can refer the components of surface traction to the ycaxes. If these

components are denoted by Si +S'i then

Si+S'i = (tj+t'j)~~; = (tj+t'j)( <>;+ ~;~).

These components are also the physical components Si +Sli of stress referred to Yi-axes.
Thus

SI+SI1 = ,21 +[,'21+,22 W1,2+,21(WI,I +W2,2)]

S2 + S'2 ,22 + [,'22 +2,22 W2 •2 + ,21 W2 .1].
(3.11 )

If the surface traction on (3.2) is a constant directional pressure P2 parallel to the fixed
y-axis, then

",21 = 0,

,'21 - P2 W l,2 = 0

,,22_2P2W2.2 = o.

(3.12)

(3.13)

(3.14)

We note that (3.13) is different from (3.8).
The boundary conditions on the surfaces Xl = 0, 1 are taken to be

WI = 0,

(3.15)

(3.16)

Substituting (2.16) into (3.8, 3.9, 3.13, 3.14, 3.16) and applying (2.10, 2.20) we obtain
the explicit boundary conditions for the following two cases:



Wl,2 +W2,1 = 0
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Case I: Hydrostatic pressure P2

W 2 ,1 = 0 at 81 = 0, }.

h
at 82 = ±2}'

4(I+K);2 W2,2+P' = 0 at 82 = ±2:'

Case II: Constant directional P2

1113

(3.17)

(3.18)

(3.19)

W2,1 = 0 at 81 = 0, A. (3.20)

2(l+K);2 Wl,2+[P2+ 2(l+K);2]W2,1 = 0 at82 = ±2: (3.21)

1 I h
4(I+K)}.2w2,2+P = 0 at 82 = ±2}" (3.22)

4. SOLUTION

We shall first obtain a set of solutions satisfying the differential equations (2.20,2.21)
and the boundary conditions at 81 = 0, A.. It may be verified that these equations and
conditions are satisfied by

where

w2(8 1 , ( 2 ) = !(82) cos wn81

p1(8 1 , ( 2 ) = g(82 ) cos wi} 1

(4.1)

n = 1,2,3, ... (4.2)

!((}2) = A cosh Wn{}2 +B cosh A.2wn82

+C sinh wn82+D sinh }.2wn82

g(82) = - (PI - P2)wnA sinh Wn{}2

-(PI - P2)WnC cosh Wn{}2

(4.3)

(4.4)

and A, B, C, D are constants. The solutions with C = D = 0 correspond to an antisym­
metrical buckling while the solutions with A = B = 0 correspond to a symmetrical buckling.
We shall study these two cases separately. Moreover, the case n = 1 corresponds to the
lowest buckling mode and we shall restrict ourselves to this case only.
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5. INSTABILITY ASSOCIATED WITH A HYDROSTATIC PRESSURE pz

We take

n
A cosh AO2 + B cosh nA()z (bending)

C sinh ~Vz + D sinh n)oVz (bulging)
/.

(5.2)

(bulging).

(bending)

I
n. h n )-(PI-pz)-;,-A sm ~(z
Ie )0

g(Vz) =
n n

-(PI -Pz)ICcosh;:Oz

Substituting (5.1, 5.2) into (4.1), applying the boundary conditions (3.18,3.19) and setting
the determinant equal to zero, we obtain

4 8 nh nh
PI -Pz = ~---coth-tanh- (bending)

AZ 1+..1.4 2A z 2

4 8 nh nh
PI -P2 = ~--·--tanh-coth- (bulging)

AZ 1+..1.4 2A z 2

(5.3)

(5.4)

where

PI = pI!O +K),

Equation (2.10) implies that

Pz = pz/(1 + K). (5.5)

(5.6)

(5.8)

(5.7)

PI-PZ = 2Uz - AZ ).

It follows from (5.3-5.5) that Asatisfies the characteristic equations

0+A4 )z h nh h nh
-~- = cot - tan - (bending)

4Az 2Az 2

(I+A4
)Z h nh h nh

---;:-- = tan - cot - (bulging).
4Az 2..1. 2 2

These equations were obtained by Biot [8J, using a different formulation. Since (5.7, 5.8)
do not contain PI and Pz , they are also the characteristic equations for the case Pz = O.
Let PI = Po be the buckling load corresponding to Pz = O. Then body B is unstable if
PI and Pz satisfy the relation

or

(5.9)PI (I_ PZ ) =1.
Po PI

This equation expresses the fact that the hydrostatic pressure pz has a stabilizing effect.
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(6.1)

(6.2)

6. INSTABILITY ASSOCIATED WITH
A CONSTANT DIRECTIONAL PRESS P2

Substituting (5.1, 5.2) into (4.1) applying the boundary conditions (3.21, 3.22) and
setting the determinant equal to zero, we obtain

4 8 +4.1. 2 P2 7th 7th
PI - P2 = 1+ .1.4 +t)2P

2
coth 2)2 tanh 2 (bending)

4 8 +4)2P2 7th 7th
PI - P2 = 1 +)4 + tA2P

2
tanh 2)2 coth 2 (bulging)

where PI and P2 are defined by (5.5). The two pressures PI and P2 must again satisfy the
equation

20r----r-----r---,....-~

(6.3)

18
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FIG. 2. Antisymmetric instability (bending).
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The body B is unstable if PI and P2 satisfy equation (6.3) and (6.1 or 6.2). It is clear from
these equations that no nontrivial solution exists when PI = P2 .

Equation (6.3) and (6.1 or 6.2) have been solved numerically for different values of II
and are plotted in Figs. 2 and 3. It is seen that th~ constant directional pressure P2 stabilizes
the solid for both antisymmetric instability (bending) and symmetric instability (bulging).

h=IO

h=1 5

P
2

02 08 10

FIG. 3. Symmetric instability (bulging).

7. CONCLUSIONS

The results of the present paper are shown in Table 1, which also shows the results
obtained by Kerr and Tang. It is seen that when considering a material of the harmonic
type which undergoes antisymmetric deformation, a hydrostatic pressure stabilizes the
solid while a constant directional pressure destabilizes it. When, however, a Mooney type
material is considered, it is found that both types of lateral pressure stabilize the solid
for both antisymmetric and symmetric deformations.
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TABLE I

Mooney material
(present results)

Harmonic material
(Kerr and Tang)

Symmetric
instability
(bulging)

Antisymmetric
instability
(bending)

Symmetric
instability
(bulging)

Antisymmetric
instability
(bending)

Lateral pressure ---------------------------­

P2

Hydrostatic
pressure

Constant
directional

pressure

Stabilizing

Stabilizing

Stabilizing

Stabilizing

Stabilizing

Destabilizing

Not treated

Not treated
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A6CTpaKT-l1.cCJIe,nyeTcli YCTOHqHBOCTb npliMoyroJIbHOrO TBcp,noro TCJIa, B nJIOCKOM ,ncQJopMaI.\HOHHOM

COCTOllHHH, no,nBeplKCHHOro nOCTOllHHOMY OCCBOMy H ropH30HTaJIbHoMY ,naBJICHHIO. PaccMaTpHBalOTcli

,nBa THna ropH30HTaJIbHOrO ,naBJlCHHlI, a lIMCHHO, rHAPOCTaTlIqCCKOC llaRJICHHC H nOCTlIHHoe, HanpaBJlCH­

Hoe ,naBJlCHHC. 3TH THna 3aAaqH lICCJIC1l0BaJlHCb KcppoM 11 TaHroM llJlll I1AcaJIbHO ynpyroro MaTCpHaJIa

rapMOHlIqecKoro THna. OnpCAcmllOUJ,HC ypaBHcHl1l1 HC onllCbIBalOT 01lHaKO HallJIClKaUJ,lIM 06pa30M lICBCCT­

HbIX MaTCpllaJIOB, CCJIH AcQJopMaI.\lIl1 HC OKa3bIBalOTCli HC 3a CJIHWKOM 60JlbWHMH. Haxo,nHTClI, qTO llJIli

CJlyqall aHTlIClIMMCTPllqCCKOH ,ncQJopMaI.\HlI (H3rH6), nOCTOllHHOC HanpaBJICHHOC ,naBJlCHlIC HC 06CCnCqHBaCT

YCTOHqllBOCTI.\ TBep,noro TCJIa, TOrlla KaK rll,npOCTaTHqCCKOC llaBJICHI1C 06CCnCqHBaCT cro YCTOHqHBOCTb.

AaJIcc, TCJIO lIBJIlICTCli HCYCTOHqllBbIM llJIli CJIyqall, KOrlla ropH30HTaJIbHOC ,naBJICHHC paBHlICTCli OCCBOMy

,naBJICHlIlO. B HaCTOllUJ,CH pa60TC paCCMaTpHBaCTCli MCTCpl1aJI MyHCli. OnpCllCJIlICTClI, qTO 06a THna rop1l30­

HTaJIbHOrO ,naBJlCHHlI 06CCnCqHBalOT YCTOHql1BOCTb TCJla KaK llJIli aHTI1CI1MMCTPllqCCKOH TaK 1.\ llJIli ClIMMCT­

pllyCCKOH ,ncQJopMaI.\HH.


