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STABILITY OF A THICK RUBBER SOLID SUBJECT TO
PRESSURE LOADS

CHIEN-HENG WU and OT1T1O E. WIDERA

Department of Materials Engineering, University of Illinois at Chicago Circle, Chicago, Illinois

Abstract—The stability of a rectangular solid in plane strain subjected to a constant axial and lateral pressure is
investigated. Two types of lateral pressure are considered, namely, a hydrostatic pressure and a constant direc-
tional pressure. Problems of this type have been studied by Kerr and Tang for a perfectly elastic material of the
harmonic type. Constitutive equations of this type do not, however, give a good description of known materials
unless the strains are not too large. They have found that, for the case of antisymmetric deformation (bending), the
constant directional pressure destabilizes the solid while the hydrostatic pressure stabilizes the solid. Moreover
the solid is unstable for both cases when the lateral pressure is equal to the axial pressure. In this paper, a Mooney
material is considered. It is found that both types of lateral pressure stabilize the solid for both antisymmetric and
symmetric deformations.

1. INTRODUCTION

THE instability of a rectangular solid in plane strain subjected axially to a constant
pressure* Cp, and laterally to a constant pressure Cp,, Fig. 1, has been studied in a series
of papers by Kerr and Tang [1-3]. A fairly complete list of related references has been
given in [3]. Two types of lateral pressure have been considered, a hydrostatic pressure
and a constant directional pressure. They have found that the constant directional p,
destabilizes the solid and the hydrostatic p, stabilizes the solid for p, less than approxi-
mately 2p, . Moreover, the solid is unstable when p, = p,.

The constitutive relation used by Kerr and Tang was derived from the so called
‘“standard” strain energy density. Materials with a standard strain energy density function
are called harmonic materials and have been treated by John [4]. While the standard
strain energy density function has the advantage that the corresponding solution reduces
to that of the linear elasticity equations for infinitesimal deformations, it does not give a
good description of known materials unless the strains are not too large. This deficiency
has been demonstrated by Sensenig [5].

The problem studied by Kerr and Tang involves very large deformations if the solid
is not too thin or the ratio p,/p; is not too small. It is felt, therefore, that their results may
not even serve as a qualitative description of the true behavior of a real material for large
deformations. To examine the effect of large deformations we have solved the same problem
by using the general nonlinear theory given in Green and Zerna [6]. Unfortunately, no
simple constitutive relation is available for compressible materials and, therefore, no
direct comparison can be made. Nevertheless our results are valid for large deformations
and are completely different from those obtained by Kerr and Tang.

We have solved the problem for a Mooney solid and found that both the constant
directional and the hydrostatic p, stabilizes the solid. While the stabilizing effect due to a

* C is a material constant involved in the analysis.
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hydrostatic p, is independent of the thickness of the solid, the stabilizing effect due to a
constant directional p, is stronger for a thinner solid. Furthermore, the solid is stable
when p, = p,. These results hold for both antisymmetric instability (bending) and sym-
metric instability (bulging). The case of symmetric instability has not been treated numeri-
cally by Kerr and Tang due to the obvious reason that very large strains are involved.

Finally, it should be mentioned that the stability of Mooney type solids of other
geometries has been studied by Rivlin, Wilkes and others.*

2. SMALL DEFORMATION SUPERPOSED ON FINITE UNIFORM
EXTENSIONS IN TWO PERPENDICULAR DIRECTIONSt

Let us consider a rectangular solid By occupying the regionf 0 < x; < 1,
—h/2 < x; < h/2, —o0 < x3 < + o0, where x; is a rectangular system. The body B, is
deformed into a body B by two uniform finite extensions (compressions) along the x, and

* A list of references may be found in {6, 7).

+ This section is an abridged version of the results given in Green and Zerna [6]. The reader is referred to
[6] for details of the notation and the derivation.

1 The coordinates have been nondimensionalized.
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x, directions. We take a set of moving coordinates 8; to coincide with a fixed rectangular
system of coordinates (x, y, z) in the strained body B. Thus we have
bh=x, b=y, O3=z 2.1)
If the axes (x, y, z) are taken to coincide with the rectangular axes then

X y « z
PR} Xy =+, =
Ay 2T A R

where A, 4; and A; = 1 are the constant extension ratios. If the material is incompressible,
then A; = 1/4, since 1,4,4; = 1 and 1; = 1. Equation (2.2) may now be written as

(2.2)

X =

X, = %, Xy = YA, Xy =2z (2.3)

where A = 1, = 1/4,.
It follows from (2.3) and (2.1) that the covariant metric tensors g;; and G;; of B, and B,
respectively, are

/22 0 0
0 0 t

where J;; is the Kronecker delta. The strain invariants associated with body B are

1
I, =2i+A+423 = ,12+P+1

Il

1
I, = 2724457 +45° =P+,12+1 2.9

I;=1.
If the strain-energy function W is of the form
W = Cl(I,-3)+K(I,—-3)] (2.6)
where C and K are constants, then the stress components t¥ for body B are, apart from the
constant C,
0 = 2gY 4+ 2KBY +p oY . (2.7
Here, tensor BY is given by
Bii = [,g—gikgh (2.8)
and Cp is a hydrostatic pressure. It follows from (2.7, 2.8) that
' =21 +K)A*+2K +p

1
22 = X1 +K)P+2K+p

1
'!,'33 = 2+2K(/12+/12) +p

12 = 13 = 23 = .
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Since 4 and p are constants for the present problem, the stress equations of equilibrium
are satisfied when the body forces are zero. If body B is held in equilibrium by two constant
pressures Cp, and Cp,, then we must set

214+ K)A2+2K+p = —p,
(2.10)

1
2(1+K)P+2K+p = —p,.

Equation (2.10) can be solved for the two unknown constants A and p.

To study the stability of the strained body B we consider a slightly buckled body B".
A point P in body B is carried to a point P’ in body B’ by the dimensionless displacements
wy(0,,0;), o = 1 and 2, where w, are the covariant components of the displacement vector
w referred to the base vectors at point P of body B.

The covariant metric tensor of body B’ is

Gij+Gi; = 0+ (w; j+w;) (2.11)
where w; ; = 0w;/06". The strain invariants associated with body B’ are
Li+1=1,+8%G,,
L+1 = 1,+8%Gy (2.12)
13 +I’3 = 13 +5aﬂG;ﬂ
For the strained body B’ the strain energy function corresponding to (2.6) becomes
W=C,[(I+1},-3)+K(I,+1I,—3)]. (2.13)
The corresponding stress tensor for the strained body B’ is '/ + 1"/ where
vV = 2KB'" 4 pG'i 4 p'4Y. (2.14)
Here, tensor B’V is given by
B = (glig® — giagjﬂ)G;B (2.15)
and C,p’ is again a hydrostatic pressure. It follows from (2.14, 2.15) that

! = 4Kw, , —2pw, 1 +p’
T,ZZ = 4KW1'1 _ZPWZ,Z +p/

1
1'/33 = 4K()—2W1,1 +/{2W2’2) +p' (216)

U= — (2K+P)(W1,2 +wy 1)
B =13 =0
The equations of equilibrium reduce to

(T,ij + T“‘Wj‘k + Tkjwi,k)ﬁ = 0 (217)
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Substitution of (2.16) into (2.17) yields

(t'"' 2K —pwy 11 +(t?2=2K—pWw; 52+p/; =0 .18
(t"'—2K—pw, 1, +(1?? =2K—p)w, 5, +p/, = 0.

The third equation of equilibrium is satisfied identically. To obtain a third equation for
the determination of the three unknown functions w,, w, and p’, we use the condition

Iy = 0. (2.19)
Equations (2.19, 2.12) imply that
Wl,l + WZ,Z = 0 (220)

On substituting (2.9) into (2.18), we obtain

(1+K))~2W111+2(1+K) sWi22+p1 =0
2.21)
21+ K) 2w, 11+2(1+K) FWa, 22+P2 = 0.

Equations (2.20, 2.21) together with certain homogeneous boundary conditions constitute
an eigenvalue problem for the determination of A. This, in turn, determines the ratio of
p: and p, from equation (2.10).

3. BOUNDARY CONDITIONS
Let y; be a set of moving rectangular cartesian coordinates in the body B’ and let the
axes (¥, ¥2, y3) coincide with the fixed axes (x, y, z). Then
yi == 0,--|—W,-. (31)
We shall denote the base vectors at P in the body B by G’ and the base vectors at P’ in
the body B’ by G+ G".
The surfaces x, = + h/2 are parametrized by the equations

F(6,,0,,0,) = 0. (3.2)

=0,+
2*2,1

Referred to y-axes, the unit normal to (3.2) has directions proportional to 0F/dy;. The
unit normal n to the surface (3.2) may be written as

n = (n,+nm)(G'+G"). (3.3)
It follows from a simple tensor transformation that
, OF dy;  OF
n; + n;, = 6 ael = 60' (34)
where
0F OF -%
[6_0' 6_01( ”+G’”)J =1l4+w,, (3.5

is a normalizing constant.
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The contravariant components C(t'+1") of the surface traction on the surface (3.2) of
the body B’ are

= (P + ) n;+n))
— T25+(,{'2i+125w2‘2)-

The physical components C(T*+ T") of this traction are then given by

T+T! = 2402 422y 4w, )]

(3.6)
T2+ T? = 122+ [122 4+ 2172w, ,].
If the surface traction is a hydrostatic pressure p,, then
3! =, 2?2 = —p, (3.7
=90 (3.8)
1:‘22 - 2p2W2‘2 = O. (3.9)

The second condition of (3.7) is just the second of (2.10).
Alternatively, we can refer the components of surface traction to the y;-axes. If these
components are denoted by s' +s" then

S .y o Owy
st = P+t = () 8+ 3.10
s 45" = )%'j '+ )( ’+66j) (3.10)
These components are also the physical components S'+ S of stress referred to y;-axes.
Thus

S1+Sz1 — T21+[T/21 +T22W1,2+121(W1,1+W2,2)] )

(3.11)
S24+8% = 24 [T 4 2t w, , P wy )

If the surface traction on (3.2) is a constant directional pressure p, parallel to the fixed
y-axis, then

=0, 1?=-p, (3.12)
7,21_P2W1,2 =0 . (3.13)
22 -2p,w,, = 0. (3.14)

We note that (3.13) is different from (3.8).
The boundary conditions on the surfaces x; = 0, | are taken to be

= —p,, 2 =0 (3.15)
w, =0, 12 = 0. (3.16)

Substituting (2.16) into (3.8, 3.9, 3.13, 3.14, 3.16) and applying (2.10, 2.20) we obtain
the explicit boundary conditions for the following two cases:
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Case I: Hydrostatic pressure p,

wy =0, wy,; =0 atf; =0,4 (3.17)
+ =0 atf, = -1-i (3.18)
WigTtWa = 2T 5 .
1 , h 9
4(1+K)/1—2w2,2+p =0 ath, = iﬁ : (3.19)
Case 11: Constant directional p,
w, =0, wy,; =0 atf, =0,4 (3.20)
1 1 h
2(1+K)17w1,2+ p2+2(1+K)F w,, =0 até, = iﬂ (3.21)
1 , h
4(1 +K)FW2_2 +p = 0 at 92 = iﬂ . (322)

4. SOLUTION

We shall first obtain a set of solutions satisfying the differential equations (2.20, 2.21)
and the boundary conditions at #; = 0, 4. It may be verified that these equations and
conditions are satisfied by

1 df(0,) .

wy(0;,0;) = —w_,, do, sin w,0,
wy(01, 0,) = f(0,) cos w,0, 4.1
p'(6y,0;) = 2(6,) cos w,0,
where
o= =123, 4.2)
A
f(8,) = Acosh w,0,+ B cosh 2,0, @3
+Csinh w,0, + D sinh 20,6, '
;) = —(p; — p2)w,A sinh w,0
8o, P1—P2 2 (4.4)

—(pi — P2)w,C cosh w,8,

and A, B, C, D are constants. The solutions with C = D = 0 correspond to an antisym-
metrical buckling while the solutions with 4 = B = 0 correspond to a symmetrical buckling.
We shall study these two cases separately. Moreover, the case n = 1 corresponds to the
lowest buckling mode and we shall restrict ourselves to this case only.
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5. INSTABILITY ASSOCIATED WITH A HYDROSTATIC PRESSURE p,

We take

A cosh g(]z + Bcosh nA0, (bending)
f(0;) = (5.1)
C sinh /foz +Dsinh 7260, (bulging)

~(pi—p2); Asinh 20, (bending)
A )
g(8,) = (5.2)
n n )
—(p —pZ)IC cosh 102 (bulging).

Substituting (5.1, 5.2) into (4.1), applying the boundary conditions (3.18, 3.19) and setting
the determinant equal to zero, we obtain

4 8 nh h .
Pi—Py =~ coth 5 tanhnz (bending) (5.3)
4 8 wh h .
P,—P, = PRI tanh — B coth% (bulging) (5.4)
where
Py = p,/(1+K), Py = p,/(1+K). (5.5)
Equation (2.10) implies that
P,—P, = Z(P—lz) (5.6)
It follows from (5.3-5.5) that 4 satisfies the characteristic equations
(1+2%? mh 7h ,
EvyEae coth— YE tanh — 5 (bending) (5.7)
1+4* h nh
%7)— tanh coth (bulging). (5.8)

These equations were obtained by Biot [8], using a different formulation. Since (5.7, 5.8)
do not contain P; and P,, they are also the characteristic equations for the case P, = 0.
Let P, = P, be the buckling load corresponding to P, = 0. Then body B is unstable if
Py and P, satisfy the relation

—-P, =P
or
P, P,
1-—=] =1. .
Po( Pl) 1 (5.9

This equation expresses the fact that the hydrostatic pressure p, has a stabilizing effect.
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6. INSTABILITY ASSOCIATED WITH
A CONSTANT DIRECTIONAL PRESS p,

Substituting (5.1, 5.2) into (4.1) applying the boundary conditions (3.21, 3.22) and
setting the determinant equal to zero, we obtain

4 8 +44%P, nth nh .
Pl - P2 = ?—m coth —2? tanh “‘2—‘ (bendmg) (61)
4 8 +44%P, nth 7h )
B R — — e X
P,—P, FERN P VLT tanh 7 coth > (bulging) (6.2)

where P, and P, are defined by (5.5). The two pressures P; and P, must again satisfy the
equation

Pl "'PZ = 2(‘“‘”""‘/12) . (6.3)

20

HYDROSTATIC F’2

¢ 0z 04p /s p0s 08 10
]

F1G6. 2. Antisymmetric instability (bending}.
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The body B is unstable if P, and P, satisfy equation (6.3) and (6.1 or 6.2). It is clear from
these equations that no nontrivial solution exists when P, = P,.

Equation (6.3) and (6.1 or 6.2) have been solved numerically for different values of 4
and are plotted in Figs. 2 and 3. It is seen that the constant directional pressure p, stabilizes
the solid for both antisymmetric instability (bending) and symmetric instability (bulging).

PJ / PO

29

HYDROSTATIC

F1G. 3. Symmetric instability (bulging).

7. CONCLUSIONS

The results of the present paper are shown in Table 1, which also shows the results
obtained by Kerr and Tang. It is seen that when considering a material of the harmonic
type which undergoes antisymmetric deformation, a hydrostatic pressure stabilizes the
solid while a constant directional pressure destabilizes it. When, however, a Mooney type
material is considered, it is found that both types of lateral pressure stabilize the solid
for both antisymmetric and symmetric deformations.
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TaBLE 1
Mooney material Harmonic material
(present results) (Kerr and Tang)
Lateral pressure
P, Antisymmetric Symmetric Antisymmetric Symmetric
instability instability instability instability
(bending) (bulging) (bending) (bulging)
Hydrostatic Stabilizing Stabilizing Stabilizing Not treated
pressure
Constant
directional Stabilizing Stabilizing Destabilizing Not treated
pressure
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AGcrpakt—HccnenyeTc yCTORMMBOCTE MIPSMOYTO/IBHOTO TBEPAOrO Teia, B MIOCKOM JedopMaluMOHHOM
COCTOAHUH, MOJABEPKEHHOTO MOCTOSHHOMY OCEBOMY M TOPHM30HTaJbHOMY JaBlieHHI0. PaccMaTpuBaroTcs
IBa TUIA TOPU3OHTANBHOTO JABNCHUA, 3 MMEHHO, THAPOCTATHYECKOE NARJICHHE U TIOCTAHHOE, HATIPaBleH-
HOe faBjeHHe. DTH THIA 3a]a4u ucciaeaosanuch KeppoM u TaHroM ns MaeanbHO yNpyroro MaTepuana
rapMoHKYeckoro Tna. Onpenenstonue ypaBHEHHs HE ONIMCHLIBAKOT OHAKO HALNEXKAILNUM 06pa3OM MCBECT-
HBIX MATEPHANIOB, ¢C/H JehOpMaLMH HE OKA3bIBAIOTCA HE 3a CAMIIKOM Gonbiuumu. HaxoauTes, 4to ais
clly4asi aHTHCHMMETpHYeCKOR aedopmaiiiu (u3rub), IOCTOAHHOE HANPABIEHHOE NABIEHHE He obecneuuBaeT
YCTOHYMBOCTL] TBEPAOIO TeJIa, TOTAA KakK THAPOCTATUYECKOE NAB/icHHE 0BeCreYnBaeT €ro yCToNYMBOCTD.
Harnee, TeNO ABNACTCA HEYCTONYMBEIM [UIA CIIy4Yasi, KOT1a TOPH3OHTAJILHOE AAB/IEHHE PABHACTCH OCEBOMY
JaeneHuto. B HacToseit pabote paccmaTpuBaeTcs MeTepuan Myhes. Onpenensercs, yto o6a Tvna ropuso-
HTaABHOTO JABNCHNA 00ECeYHBaIOT YCTORYMBOCTD TeN1a KAK 1/ AHTUCUMMETPHYECKO#H TaK Il ITH CHMMET~
puyeckoii nedhopmauuu.



